
Reversible structures

Luca Cardelli
Microsoft Research, Cambridge

luca@microsoft.com

Cosimo Laneve
Università di Bologna
laneve@cs.unibo.it

ABSTRACT
Reversible structures are computational units that may pro-
gress forward and backward. We study weak coherent struc-
tures that are primarily inspired by dna circuits and may
be compiled in these systems and demonstrate a standard-
ization theorem. When units have unique id, the standard-
ization theorem may be strengthened in a form that bears
a quadratic algorithm for reachability, a problem that is
expspace-complete for generic structures. We then define
a compilation of a concurrent calculus – the asynchronous
rccs – to dna via reversible structures, thus yielding a fine-
grain implementation of memories of the past into chem-
istry.

1. INTRODUCTION
In abstract computation systems, such as automata, lambda

calculus, process calculi, etc., we usually model the forward
progress of computations through a sequence of irreversible
steps. But physical implementations of these steps are usu-
ally reversible: in physics and chemistry operations are re-
versible, and only an appropriate injection of energy and
entropy can move the computational system in a desired
direction. It is therefore relevant to discuss the implemen-
tation of a simple computational calculus into a chemical
system, reflecting the reversibility of the chemical system
into the calculus instead of abstracting it.

In general, since process calculi are not confluent and pro-
cesses are non-deterministic, reversing a (forward) computa-
tion history means undoing the history not in a deterministic
way but in a causally consistent fashion, where states that
are reached during a backward computation are states that
could have been reached during the computation history by
just performing independent actions in a different order. In
rccs [7], Danos and Krivine achieve this with ccs without
recursion by attaching a memory m to each process P , in
the monitored process construct m : P . Memories in rccs
are stacks of information needed for processes to backtrack.

Chemical systems, however, are naturally reversible with-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

out retaining any backtracking memory. Reversibility there
means reversibility of configurations, while time of course
keeps marching forward. The only way to make such a sys-
tem exactly reversible is to remember the position and mo-
mentum of each molecule, which is precisely contrary to the
well-mixing assumption of chemical soups, namely that the
probability of collision between two molecules is independent
of their position [9]. In order to comply with the chemical
well-mixing assumption, notions of causality and indepen-
dence of events need to be adapted to reflect the fundamen-
tal fact that different molecules of the same chemical species
are indistinguishable. Their interactions can cause effects,
but not to the point of being able to identify the precise
molecule that caused an effect.

In this paper we study the formal interplay between causal
dependency and a computational system where terms bear
multiplicities, which are a way of expressing the presence
of different molecules of the same species – the reversible
structures. Following Lévy [11], we define an equivalence on
computations that abstracts away from the order of causally
independent reductions – the permutation equivalence. Be-
cause of multiplicities this abstraction does not always ex-
change independent reductions. For example, two reduc-
tions that use a same signal cannot be exchanged because
one cannot grasp whether the two reductions are competing
on a same signal or are using two different occurrences of a
same signal. Notwithstanding this inadequacy, permutation
equivalence in reversible structures yields a standardization
theorem that allows one to remove converse reductions from
computations. To our knowledge, the study of causality in a
language with multiplicities is original (similar studies have
been carried out in models such as Petri nets [8]).

We then provide a scheme for the implementation of sig-
nificant computational primitives – the weak coherent re-
versible structures – in dna chemical systems. As discussed
in [4], this latter systems can be precisely and programmably
orchestrated in order to model ccs-style interaction and
(massive) concurrency and to naturally model well-mixed
chemical solutions by structural congruence [2]. It turns
out that dna systems may achieve irreversible computations,
but they cannot avoid using reversible steps to do it (for ex-
ample, for binary operators), and hence they are a natural
implementation target for reversible calculi.

We finally study coherent reversible structures where mul-
tiplicities are dropped (terms have multiplicity one). Co-
herence in this strong sense is not realizable in well-mixed
chemical solutions, but may become realizable in the future
if we learn how to control individual molecules. We demon-

strate that the reachability problem in these structures has
a computational complexity that is quadratic with respect
to the size of the structures, a problem that is expspace-
complete in weak coherent structures. We also measure the
expressive power of coherent reversible structures by draw-
ing a precise comparison with a sub-calculus of rccs [7], its
asynchronous fragment.

A discussion of the integration of irreversible operators in
our model completes the work.

Related work. The studies about reversibility in calculi
date back at least to the seventies when Bennett theorized
reversible Turing machines that compute by dissipating less
energy than irreversible ones [1]. Already Bennett’s ma-
chines use histories for backtracking computations that are
deterministic in that case.

More recently, areas such as bio-systems and quantum
computing have stimulated foundational studies of reversible
and distributed computations. For this reason, several re-
versible process calculi have been developed. In [7], Danos
and Krivine define a reversible concurrent calculus – rccs
– and undertake a thorough algebraic study of reversibility.
In rccs the histories are recorded in memories that need a
complex ad-hoc management. In particular, the congruence
rule of distribution of memories in parallel contexts requires
a global synchronization in the backward direction. Using
a similar technique, [10] studies reversibility in the context
of higher order concurrent languages and demonstrate that
reversibility does not augment the expressive power of the
language.

A general technique for reversing process calculi without
using memories is proposed in [15]. As in our structures, in
this technique, the structure of processes is not destroyed
and the progress is noted by underlining the actions that
have been performed (while we use the symbol ^). Unlike
our structures, the technique, in order to tag the commu-
nicating processes, generates ids on-the-fly during the com-
munications. In reversible structures the ids are stored in
outputs and we statically enforce their unicity (coherence).
As for rccs, when the computation must be reverted in a
distributed setting, this technique requires a global synchro-
nization between parallel processes that have been spawned
at the same time.

The authors of the above papers have all noticed that
reversing a computation history means undoing the history
not in a deterministic way but in a way that is consistent
with causal dependency. This is discussed in some detail
in [14].

Structure of the paper. In Section 2 we define reversible
structures and study the encoding in dna circuits. In Sec-
tion 3 we study weak coherent reversible structures and the
theory of permutation equivalence. In Section 4 we analyze
coherent reversible structures and Section 5 is devoted their
relationship with asynchronous rccs. In Section 6 we dis-
cuss the extension of our model with irreversible operators.
We conclude in Section 7 by outlining some future work.

2. THE ALGEBRA OF REVERSIBLE STRUC-
TURES

The syntax of reversible structures uses five disjoint infi-
nite sets: names N , ranged over by a, b, c, · · · , co-names N ,
ranged over by a, b, c, · · · , and a countable set of ids, ranged

over u, v, w, · · · . Names and co-names are ranged over by
α, α′, · · · and α = α. Names and ids are ranged over x, x′,
· · · . The following notations for sequences of actions will be
taken:

– sequences of N are ranged over by A, B, · · · ;

– sequences of elements u:a are ranged over by A, B, · · · ;

– sequences of elements u:a are ranged over by A⊥, B⊥,
· · · ;

Sequences of ids are ranged over by ũ, ṽ, · · · . The dots in
sequences of ids are always omitted, that is u.v.w is short-
ened into uvw, and the empty sequence is represented by ε.
The length of a sequence is given by the function length(·).

The syntax of reversible structures includes gates g and
structures S and consists of the rules:

g ::= A⊥ . ^B.C (length(A⊥ . B) > 0)
| A⊥ . B . ^C (length(A⊥) > 0)

S ::=
0 (null)

| u:a (signal)
| g (gate)
| S | S (parallel)
| (new x) S (new)

A gate is a term that accepts input signals u:a and emits
output signals, reversibly. The form A⊥ . ^B.C represents
input-accepting gates, at least when not considering reverse
reactions. A⊥ are the inputs that have been processed, B are
the inputs still to be processed, and C are the outputs to be
emitted. The other form A⊥ . B . ^C represents an output-
producing gate (when not considering reverse reactions).
The A⊥ is as before, B are the outputs that have been emit-
ted, and C are the outputs still to be emitted. Since all the
inputs in a gate have to be processed before the outputs
are produced, we do not need to consider other forms. In
both forms, the symbol ^ indicates the next operations (one
forward and one backward) that the gate can perform. A
structure may be either a void structure 0, or a signal u:a
denoting an elementary message a with an id u, or a gate
g, or a parallel composition “ | ” that collects gates and sig-
nals and allow them to interact. A structure may also be
(new x) S that limits the scope of a name or id x to S; x
is said to be bound in (new x) S. This is the only binding
operator in reversible structures.

For example, a transducer gate transforming a signal from
a name a to b is defined by ^a .u:b. This gate may evolve
into v:a . ^u:b by inputting a signal v:a. At this stage it may
emit the signal u:b, thus becoming v:a .u:b^ or may back-
track to ^a .u:b by releasing the signal v:a (see the following
semantics). Another example is a sink gate, such as ^a . b,
that collects signals (and, in a stochastic model, may hold
them for a while). This gate may evolve into u:a . ^b, and
then may become u:a . v:b^.

We often abbreviate the parallel of Si for i ∈ I, where I
is a finite set, with

∏
i∈I Si. We write (new x1, · · · , xn) S for

(new x1) · · · (new xn) S, n ≥ 0, and sometimes we shorten
x1, · · · , xn into x̃. The free names and ids in S, denoted
fn(S), are the names and ids in S with a non-bound occur-
rence.

Structures we will never want to distinguish for any se-
mantic reason are identified by a congruence. Let ≡, called

structural congruence, be the least congruence between struc-
tures containing alpha equivalence and satisfying the abelian
monoid laws for parallel (associativity, commutativity and
0 as identity), and the scope laws

(new x) 0 ≡ 0 (new x) (new x′) S ≡ (new x′) (new x) S,

S | (new x) S′ ≡ (new x) (S | S′), if x 6∈ fn(S)

It is easy to demonstrate the following property.

Proposition 2.1. For every S, S ≡ (new x̃) (
∏

i∈I gi |∏
j∈J uj :aj). The structure (new x̃) (

∏
i∈I gi |

∏
j∈J uj :aj),

which is unique up-to the order of names and ids in the
sequence x̃ and the order of gates and signals, is called the
normal form of S.

The semantics of reversible structures is defined opera-
tionally by means of a reduction relation.

Definition 2.2. The reduction relation of reversible struc-
tures is the least relation −→ satisfying the axioms

(input capture) u:a | A⊥ . ^a . B . C −→ A⊥ .u:a . ^B . C,

(input release) A⊥ .u:a . ^B . C −→ u:a | A⊥ . ^a . B . C,

(output release) A⊥ . B . ^u:a . C −→ u:a | A⊥ . B .u:a . ^C,

(output capture) u:a | A⊥ . B .u:a . ^C −→ A⊥ . B . ^u:a . C,

and closed under the rules

S −→ S′

(new a) S −→ (new a) S′

S −→ S′

S | S′′ −→ S′ | S′′

S1 ≡ S′1 S′1 −→ S′2 S′2 ≡ S2

S1 −→ S2

Sequences of reductions, called computations, are noted −→∗.

The reductions (input capture) and (output release) are called
forward reductions, the reductions (input release) and (out-
put capture) are called backward reductions.

We explain the axioms of reversible structures semantics
by discussing the reductions of the transducer ^a .u:b when
exposed to signals v:a and w:a. The transducer may behave
either as v:a | w:a | ^a .u:b −→ w:a | v:a . ^u:b or
as v:a | w:a | ^a .u:b −→ v:a | w:a . ^u:b according
to whether the axiom (input capture) is instantiated either
with the signal v:a or with w:a – in these cases A⊥ is empty.
In turn, w:a | v:a . ^u:b may reduce with (output release)
as w:a | v:a . ^u:b −→ w:a | v:a .u:b^ | u:b or may
backtrack with (input release) as follows w:a | v:a . ^u:b −→
v:a | w:a | ^a .u:b. This backtracking is always possible
in our algebra. In fact, it is a direct consequence of the
property that, for every axiom S −→ S′ of Definition 2.2,
there is a “converse one” S′ −→ S.

Proposition 2.3. For any reduction S −→ S′ there exists
a converse one S′ −→ S.

We notice that, ^a .u:b | v:a | ^a .u:b ≡ v:a |
^a .u:b | ^a .u:b (and similarly for every permutation of
gates and signals). In these structures, the two occurrences
of ^a .u:b are indistinguishable, that is it is not possible to
identify the precise gate ^a .u:b that performs the reduction

^a .u:b | v:a | ^a .u:b −→ v:a . ^u:b | ^a .u:b. This fea-
ture formalizes the well-mixing assumption of chemical so-
lutions, namely that the probability of collision between two
molecules is independent of their position. This is also the
main difference between our model and reversible process
calculi models as [7, 14], where every element has a unique
tag. (We will study reversible structures where elements
have unique tags in Section 4.) We finally notice that, as a
consequence of the above identities, the notions of causal-
ity and independence of reductions need to be adapted to
reflect the fundamental fact that different molecules of the
same chemical species are indistinguishable.

By Proposition 2.1 and the definition of the reduction re-
lation, it is possible to restrict the arguments about the dy-
namics of reversible structures to structures in normal forms.
In turns, the following statement allows one to limit the
analysis to the subclass of structures without news when the
interest is in computations of “closed” structures, namely
structures that do not interact with the external environ-
ment. This will simplify the following notions (such as weak
coherence and labels).

Proposition 2.4. (new x̃) (
∏

i∈I gi |
∏

j∈J uj :aj) −→
(new x̃) (

∏
i∈I g

′
i |

∏
j∈J′ u

′
j :a
′
j) if and only if∏

i∈I gi |
∏

j∈J uj :aj −→
∏

i∈I g
′
i |

∏
j∈J′ u

′
j :a
′
j.

In the following, if not otherwise specified, the structures
will be considered without news.

Definition 2.5. A structure S is weak coherent when-
ever, ids are uniquely associated to names and co-names.
That is, if u:α and u:α′ occur in S then either α = α′ or
α = α′.

For example, the structure u:a . v:b^ | v:c is not weak coher-
ent because v is associated to two different co-names, while
u:a . v:b^ | v:b is weak coherent. Weak coherence is an
invariance of the reduction relation.

Proposition 2.6. If S is weak coherent and S −→ S′ then
S′ is weak coherent.

The compilation into DNA circuits. Weak coherent re-
versible structures may be implemented into the dsd lan-
guage, a formalism for defining dna strands and gates and
study the biological mechanisms for binding and unbinding
of strands [13], as a variation of the irreversible structures
of [4]. We conclude this section by defining the encoding of
the reversible structures into the dsd terms. This part may
be safely skipped by uninterested readers.

The syntax of dsd uses domains a, u, t, · · · , and toehold
domains a~ , u~ , t~ , · · · . dsd terms D are similar to
structures, except that gates and structures are replaced by
strands and dna gates. The strands and gates we use in the
dsd encoding are in particular:

– strands are <u t~ b> or <a t~ > or <t~ u>;

– dna gates are G1:G2:· · · :Gn where Gi may be either
t~ or [a t~] or [t~ a] or [a t~] or [a t~];

Given a structural congruence definition similar to the one
of reversible structures, the semantics of dsd is the least re-
lation −→ containing (structural congruence and reduction
will be denoted as in reversible strand algebra):

– G1: · · · :t~ :[a t~]: · · · : Gn | <u t~ a> ←→
G1: · · · :<u>[t~ a]:t~ : · · · : Gn | <a t~ >

– G1: · · · :t~ :[a t~]: · · · : Gn | <t~ a> ←→
G1: · · · :[t~ a]:t~ : · · · : Gn | <a t~ b>

(axioms are bidirectional, hence the symbol←→) and closed
under the same rules of reversible structures. Figure 1 illus-
trates strands, dna gates and reductions of the dsd lan-
guage. The encoding $ ·% of reversible structures to dsd
terms is homomorphic with respect to parallel and new and
it is defined on signals and gates as follows (for gates we only
illustrate the encodings of configurations of a1 . a2 . v1:b1 . v2:b2):

– $u:a% = <u t~ a>

– $^a1 . a2 . v1:b1 . v2:b2% =
t~ :[a1 t~]:[a2 t~]:[v1 t~]<b1>:[v2 t~]<b2>

| <t~ v1> | <t~ v2>

– $u1:a1 . ^a2 . v1:b1 . v2:b2% =
<u1>[t~ a1]:t~ :[a2 t~]:[v1 t~]<b1>:[v2 t~]<b2>

| <a1 t~ > | <t~ v1> | <t~ v2>

– $u1:a1 .u2:a2 . v1:b1 . ^v2:b2% =
<u1>[t~ a1]:<u2>[t~ a2]:[t~ v1]:t~ :[v2 t~]<b2>

| <a1 t~ > | <a2 t~ > | <t~ v2>

Figure 1 illustrates a sample encoding of 1 input and 1
output gate and its reactions. The strict correspondance
between reversible structures and the dsd language is fixed
by the following statement.

Proposition 2.7. S −→ S′ implies $S% −→ $S′%.
Additionally, if S is weak coherent then $S% −→ S′ implies
there is S′′ such that S′ ≡$S′′% and S −→ S′′.

The second part of Proposition 2.7 is restricted to weak
coherent structures. In fact, $S% −→$S′% implies S −→
S′ is false in the unrestricted case. Consider the encoding of
a gate u:a . v:b^, namely <u>[t~ a]:[t~ v]:t~ | <a t~ >,
and observe that, in this dna gate, the co-name b never
appears. If the (not weak coherent) structure also contained
the signal v:c, which is compiled into <v t~ c>, then the
dna structure might reduce to <u>[t~ a]:t~ :[v t~]<c>

| <a t~ >. This last dna structure encodes u:a . ^v:c and
cannot be obtained from the structure u:a . v:b^ | v:c.

The correspondence between the a subset of the dsd lan-
guage and reversible structures has been crucial in the design
of the latter ones. However, at this point a reader may won-
der whether ids are really needed in these two formalisms:
is it possible to define an id-free reversible structure and an
encoding in the dsd language? The answer is positive. In
this case signals are encoded in two-domains strands and
gates have no overhangs [5] (instead of the three-domain
strands above). However, in two-domains dsd structures it
is not possible to define coherence (see Section 4) and to
encode (in a causally consistent way) process calculi such
as asynchronous rccs. Said in a more effective way: the
three-domains dsd (sub)language has the shortest domains
that correctly implement reversibility of reversible process
calculi.

3. WEAK COHERENCE AND CAUSALITY
Computations of reversible structures may have a lot of

forward and backward reductions that continuously do and

undo stuff. For example, in the transducer of Section 2, the
computation

v:a | w:a | ^a .u:b −→ w:a | v:a . ^u:b −→ v:a | w:a | ^a .u:b

is actually equivalent to the empty one – the computation
performing no reduction at all. Clearly the above two reduc-
tions may be repeated at will, still being equivalent to the
empty computation. Therefore, it is meaningful to analyze
whether a computation may be simplified, i.e. shortened,
without altering its computational meaning. In general,
these simplifications may require swapping of independent
reductions. For example, in

v:a | w:a | ^a .u:b | ^a . z:c
−→ w:a | v:a . ^u:b | ^a . z:c (1)

−→ v:a . ^u:b | w:a . ^z:c (2)

−→ v:a | ^a .u:b | w:a . ^z:c (3)

the reductions (1) and (3) may be simplified because one is
the reverse of the other. In order to achieve this simplifi-
cation one may observe that reductions (1) and (2) involve
disjoint structures – are independent, there is no causal de-
pendency between them (similarly for (2) and (3)). After the
swapping of (1) and (2), the reduction (1) occurs immedi-
ately before (3) and they may be removed, thus obtaining

v:a | w:a | ^a .u:b | ^a . z:c −→ v:a | ^a .u:b | w:a . ^z:c
The standard equivalence in literature that identifies the

above computations is permutation equivalence [11, 3]. We
follow Lévy that uses labels for defining permutation equiv-
alence.

Definition 3.1. Let labels, noted µ, ν, · · · , be input
capture labels u|ṽ^A◦w̃, input release labels ṽu^A◦w̃, output
release labels ṽ◦w̃^uz̃, and output capture labels u| ṽ◦w̃u^z̃.
The sub-labels ṽ^A◦w̃ and ṽ◦w̃^z̃, noted `, `′, · · · , are called
labels of gates.

The symbol “◦” in labels separates the ids that refer to the
input part of a gate from the ids that refer to the output
part. Labels will be used for marking reductions (see Defini-
tion 3.2). In weak coherent structures where ids are uniquely
associated to names and co-names, labels carry the minimal
informations for identifying gates and signals that are re-
duced (up-to multiplicities). For example, if a is the name
associated to the id u, then the label u◦u^u refers to the
gate u:a .u:a . ^u:a. In fact, this gate may be reduced with
an (output release) axiom. The label u | u◦u^u addresses a
signal u:a and a gate u:a .u:a . ^u:a (the same as before). In
fact, u:a | u:a .u:a . ^u:a may be reduced with an (output
capture) axiom. We notice that two different labels identify
the same gate u:a .u:a . ^u:a. This is not surprising because
labels mark reductions and the above gate may be actually
involved in two different reductions. Finally, the two labels
u◦u^u and uu◦^u mark te output-release reductions of the
gates u:a .u:a . ^u:a and u:a .u:a . ^u:a, respectively. With-
out the symbol “◦” these two reductions should have been
confused.

It is worth to observe that the main difference between
our labelling technique and those in [11, 3] is that labels
are already available in the structures (and in the dna, by
Proposition 2.7) as ids of signals and gates.

410/1/10Luca Cardelli 410/1/10

^a. v:b
_

u:a
_

u:a. ^v:b
_

u:a. ^v:b
_

 u:a. v:b^
_

v:b
_

reactions

signal u: a
_

DNA gate ^a. v: b
 _

DNA gate ^a.v: b.w: d
_

d
_

w dd w

Figure 1: The dsd encoding of 1 input and 1 output gates and their reactions

Definition 3.2. Let id(A⊥) = ṽ, id(B) = w̃ and id(C) =
z̃; we write µ : S −→ S′, when the axiom used in the proof
tree is

– (input capture) u:a | A⊥ . ^a . A′ . C −→ A⊥ .u:a . ^A′ . C
and µ = u | ṽ^A′◦z̃,

– (input release) A⊥ .u:a . ^A′ . C −→ u:a | A⊥ . ^a . A′ . C
and µ = ṽu^A′◦z̃,

– (output release) A⊥ . B . ^u:a . C −→ u:a | A⊥ . B .u:a . ^C
and µ = ṽ◦w̃^uz̃,

– (output capture) u:a | A⊥ . B .u:a . ^C −→ A⊥ . B . ^u:a . C
and µ = u | ṽ◦w̃u^z̃.

Letting a and b be the names associated to the ids u and v,
respectively, in a weak coherent structure, both the labels
u◦^v and u^◦v identify the same gate u:a . ^u:b. In fact, the
former label marks an (output release) reduction, the latter
one marks an (input release) reduction. It is worth to notice
that, if structures are not weak coherent, then labels may
fail to address gates/signals that are reduced. For example,
in u:a | u:b | ^a . v:c | ^a . v:d, the two reductions are
labelled u | ^a◦v even if they address two different pairs of
signal and gate.

Let µ∩ ν 6= ∅ if and only if one of the following holds (we
recall that `, `′ range over terms ṽ^A◦w̃ and ṽ◦w̃^z̃):

1. µ = u | ` and ν = u | `′;

2. µ = u | ` and ν = v | `;

3. µ = ` and ν = `;

4. µ = ũ^◦ṽ and ν = ũ◦^ṽ;

5. µ = ũ◦^ṽ and ν = ũ^◦ṽ.

We notice that, when µ ∩ ν 6= ∅, the gates/signals that are
reduced by µ and ν are not disjoint. We write µ ∩ ν = ∅
when µ ∩ ν 6= ∅ does not hold.

Lemma 3.3. Let µ : S −→ S′ and ν : S −→ S′′ be such
that µ∩ ν = ∅. Then there exists S′′′ such that ν : S′ −→ S′′′

and µ : S′′ −→ S′′′. The reductions µ and ν are said causally
independent.

Lemma 3.3 is known in the literature as “diamond lemma”
because the two computations µ; ν and ν;µ have same initial
and final structures – they are coinitial and cofinal. The con-
dition µ∩ν = ∅means that gates/signals that are reduced by
the two reductions are disjoint, therefore reductions are not
causally related and may be swapped. Contrary to other
formalisms [11, 3, 7], in (weak coherent) reversible struc-
tures, the condition µ ∩ ν = ∅ does not completely catch
reductions that may be performed concurrently. For exam-
ple, in u:a | u:a | ^a .u:a | w:c .u:a . ^v:b we have the
possibility of one input capture and one output capture of
the same signal and Lemma 3.3 does not apply (even if there
are two copies of the signal). The problem follows from the
fact that labels do not convey details about multiplicities of
signals and gates.

Definition 3.4. Let [µ]+, read the converse label of µ,
be the following labels (let a be the name associated to u):

[u | ṽ^a . A◦w̃]+
def
= ṽu^A◦w̃

[ṽu^A◦w̃]+
def
= u | ṽ^a . A◦w̃

[ṽ◦w̃^uz̃]+
def
= u | ṽ◦w̃u^z̃

[u | ṽ◦w̃u^z̃]+ def
= ṽ◦w̃^uz̃

Let µ1 : S1 −→ S2, · · · , µn : Sn −→ Sn+1. The computation
S1 −→∗ Sn+1 performing the reductions µ1, · · · , µn will
be denoted with µ1; · · · ;µn. For example, the computation
u:a | ^a . v:b −→2 v:b | u:a . v:b^ is noted u|^a◦v ; u◦^v. We
observe that µ ; [µ]+ and [µ]+ ; µ do not change the initial
structure (see Definition 3.5). Therefore the name given to
[µ]+.

Definition 3.5. Permutation equivalence, written ∼, is
the least equivalence relation between computations closed
under composition and such that:

µ; [µ]+ ∼ ε
µ; ν ∼ ν;µ if µ and ν are coinitial and µ ∩ ν = ∅

For example, the computation

u : a | ^a . v:b | u:a . ^v:b −→ u:a . ^v:b | u:a . ^v:b

−→ u:a . ^v:b | u:a . v:b^ | v:b

−→ u:a | ^a . v:b | u:a . v:b^ | v:b

that is represented by the sequence of labels u|^a◦v ; u◦^v ; u^◦v
is permutation equivalent to u◦^v.

Permutation equivalence as defined in Definition 3.5 is
more discriminant than usual. As already discussed, the
computations u | ^a◦u ; u | w◦u^v and u | w◦u^v ; u | ^a◦u
of the structure u:a | u:a | ^a .u:a | w:c .u:a . ^v:b are
not equal even if the two reductions concern different terms.
The reason for this discriminating power is due to multi-
plicities of gates and signals and the fact that labels do not
distinguish different occurrences of a same term. Of course
we might have defined more informative labels recording the
proof-tree of a reductions, in the style of [3], but this would
have been a twist of well-mixed chemical solutions in the
theory of reversible structures. In fact, in these solutions,
molecules have concentrations and two occurrences of a same
molecule cannot be separated. Anyhow, reversible struc-
tures without multiplicities (where labels uniquely identify
the terms) and their properties are studied in the next sec-
tion.

Weak coherence guarantees the soundness of Definition 3.5.
The (not weak coherent) structure u:a | ^a . v:b | u:a . ^v:c
has a computation

u:a | ^a . v:b | u:a . ^v:c −→ u:a . ^v:b | u:a . ^v:c

−→ u:a . ^v:b | ^a . c | u:a

whose labels are u | ^a◦v ; u^◦v, with [u | ^a◦v]+ = u^◦v.
However, the two labels specify different gates and the above
computation is not equivalent to ε.

Let the gate of a label be the gate, up-to structural con-
gruence, involved in the reduction. Let µ : S −→ S′ and let
g be a gate in S. We define g/µ, the residual of g after µ,
the following gate in S′:

g/µ
def
=

{
g if g is not the gate of µ
g′ if g is the gate of µ and g′ is the gate of [µ]+

Proposition 3.6. Let S be weak coherent and µ : S −→
S′. (1) For every gate g in S there is a gate g/µ in S′; (2) for
every gate g′ in S′ there is a gate g in S such that g′ = g/µ.

Theorem 3.7 (Standardization theorem). Let S be
weak coherent and µ1 ; · · · ; µn be a computation of S such
that µn is the converse of µ1. Then there is a shorter com-
putation that is permutation equivalent to µ1 ; · · · ; µn.

Proof. By induction on n. The cases n ≤ 2 are either
vacuous or obvious. Let n ≥ 3. The argument for the induc-
tive case analyzes the sequence µ1 ; · · · ; µn. Since µ1 and
µn are one the converse of the other, let µ1 be the reduction
whose label specifies the set {g1}, where g1 is a gate (it does
not specify any signal). The argument is by cases on µ2.
Let µ1 : S −→ S′ and g2 be the gate of µ2 in S′. By Propo-
sition 3.6, let g′2 in S be such that g2 = g′2/µ. If g1 6= g′2
then µ1 and µ2 are coinitial and µ1 ∩ µ2 = ∅. Therefore
µ1 ; µ2 ; · · · ; µn ∼ µ2 ; µ1 ; · · · ; µn and we may apply
the inductive hypothesis to µ1 ; µ3 ; · · · ; µn. If g1 = g′2
and µ2 = [µ1]+ then µ1 ; µ2 ; · · · ; µn ∼ µ3 ; · · · ; µn

and we are done. It remains the case g1 = g′2 and µ1 = µ2

then µn is the converse of µ2 as well. We therefore use the
inductive hypothesis on µ2 ; · · · ; µn.

The definitions of permutation equivalence and weak co-
herence imply that two permutation equivalent computa-
tions are cofinal. The converse direction is false, as wit-
nessed by the above two computations u | ^a◦u ; u | w◦u^v
and u |w◦u^v ; u | ^a◦u. This problem, that we will amend

in the next section by refining weak coherence, is well-known
in the theory of Petri nets [8].

We conclude this section with a comment about the com-
putational complexity of the reachability problem in reversible
structures – the existence of a computation from one struc-
ture to another –, which is a relevant practical issue when
structures represent dna solutions. It is straightforward
to encode reversible structures into symmetric (a.k.a. re-
versible) and bounded place-transition Petri nets. However,
for these nets, the reachability marking problem is expspace
complete [12, 6]. We are not aware of any better algorithm
that improve, in our case, this limit. It is worth to remark
that, even restricting our analysis to weak coherent struc-
tures, the conditions do not change very much because the
problem reduces (by Theorem 3.7) to find the shortest com-
putation in symmetric and bounded place-transition Petri
net, which is the one returned by the algorithms in [12, 6].
In the next section we will study a refinement of coherence
that retains better reachability algorithms.

4. COHERENT STRUCTURES
The mismatch between cofinality and permutation equiva-

lence (of coinitial computations) may be eliminated by strength-
ening the notion of weak coherence. Following the remarks
in Section 3, the refinement may be achieved by removing
multiplicities from initial structures. We recall from the in-
troduction that the constraint of molecules without multi-
plicities (with unique identity) is not realizable in well-mixed
chemical solutions. The aim of this section and the next one
is to study the expressive power of reversible structures and
compare them with a concurrent calculus.

Let an occurrence of an id u be positive in a structure S

if u occurs in a signal or in a gate A⊥ . B . ^C or A⊥ . ^B . C
in the A⊥ sequence or in the C sequence. The occurrence of
u is negative if it is in the B sequence of a gate A⊥ . B . ^C.
Let the type of g, written type(g), be the sequence of ids of
co-names in g. For example type(v:a . ^a .u:a .w:c) = uw
(as usual, dots are omitted in sequences of ids). Let the type
of a label be the type of the gate involved in the reduction.

Definition 4.1. A weak coherent structure S is coherent
whenever

– different gates in S have types with no id in common;

– ids occur at most twice: one occurrence is positive and
the other is negative.

Proposition 4.2. If S is coherent and S −→ S′ then S′

is coherent.

We notice that, replacing the second part of Definition 4.1
with the simpler constraint that ids occur linearly in struc-
tures, then Proposition 4.2 should have been definitely threat-
ened. For example, the structure u:a | ^a . v:b reduces to
u:a . v:b^ | v:b where v occurs twice – one occurrence is
positive, the other is negative: the reader may verify that
this last structure matches the constraints of Definition 4.1.

Back to the mismatch between cofinality and permuta-
tion equivalence, if we weaken Definition 4.1 by admitting
unconstrained occurrences of ids (the second constraint of
coherence), then the problem remains. For example, the
(not coherent) structure u:a | u:a | ^a . v:b | ^a .w:c has two
cofinal computations u|^a◦v ; u|^a◦w and u|^a◦w ; u|^a◦v
that are not permutation equivalent.

Theorem 4.3. Let µ1;µ2; · · · ;µm and ν1; ν2; · · · ; νn be
two coinitial computations of a coherent structure. Then
µ1;µ2; · · · ;µm ∼ ν1; ν2; · · · ; νn if and only if they terminate
in the same structure, up-to structural congruence (they are
cofinal).

Proof. The only-if direction is immediate by definition
of ∼ and (strong) coherence. The if-direction is demon-
strated by induction on m+ n. The base case (m+ n = 0)
is immediate. Assume the theorem holds when m + n = h,
we prove the case m+ n = h+ 1.

The interesting case is when Theorem 3.7 cannot be ap-
plied to the (sub)com-putations µ1;µ2; · · · ;µm and ν1; ν2; · · · ; νn.
Otherwise we use the inductive hypothesis.

So assume that µ1;µ2; · · · ;µm and ν1; ν2; · · · ; νn have no
pair of converse labels. By coherence, if the types of two
labels are equal then the corresponding reductions have the
same direction (they are both forward or backward). By co-
finality, the two computations must address the same gates
and every gate appears the same number of times in labels.
(Therefore m = n.) Since the computations do not contain
converse labels then, projecting out labels of a same type, we
obtain either sequences of input captures followed by output
releases or sequences of output captures followed by input
releases – therefore subsequences are monotone. Addition-
ally, the projections of µ1;µ2; · · · ;µm and of ν1; ν2; · · · ; νn
corresponding to a same type must be pairwise equal.

There are two cases: (a) one of the sequences has empty
subsequence of captures, (b) every sequence has nonempty
subsequence of captures. In case (a), the first label of the
empty subsequence of captures may be permuted till the
beginning of the sequences µ1; · · · ;µm and of ν1; · · · ; νn,
therefore we are reduced to shorter computations (because
the first two labels are equal) and we may apply inductive
hypothesis. In case (b), assume µ1 is an input capture of a
signal u:a and let νh be the first occurrence in ν1; · · · ; νn of
the gate in µ1. Because of cofinality, µ1 = νh. We demon-
strate that νh may be permuted with ν1; · · · ; νh−1 and the
argument is as in case (a). If no label ν1, · · · , νh−1 is an
input capture of u:a then the permutation is possible. Oth-
erwise, take the reduction νi, 1 ≤ i ≤ h − 1, with largest i
that performs an input capture. Then νi is either equal to
u | ṽ^a . A◦w̃ or equal to u | ṽ◦ṽ′u^w̃. In both cases, after the
reduction νi the occurrence of u is positive. Since u:a cannot
be released by the gate of νi (because this would contradict
the monotony) and by any other gate in νi+1 ; · · · ; νh−1

(because this would contradict coherence) then it is impos-
sible that νh performs an input capture.

The case when µ1 is an output capture is similar.

We conclude this section by proving that the reachability
problem for coherent structures has a computational com-
plexity that is quadratic with respect to the number of gates
in the structures. We use the notion of distance between two
gates with the same type as the least number of reductions
to convert one gate into the other (it is infinite, otherwise).
Formally, the distance between two gates g and g′ of the
same type, written |g − g′|, is the commutative operation
defined as follows:

– if g = A⊥ . A1⊥ . ^A . B and g′ = A⊥ . A2⊥ . ^A . B, where
the first id of A1⊥ is different from the first id of A2⊥,
then

|g − g′| def
= length(A1⊥) + length(A2⊥)

– if g = A⊥ . A1⊥ . ^A . B and g′ = A⊥ . A2⊥ . A . B1 . ^B2,
where the first id of A1⊥ is different from the first id of
A2⊥, then

|g − g′| def
= length(A1⊥) + length(A2⊥ . A⊥ . B1)

– if g = A⊥ . A1⊥ . B1 . ^B′1 and g′ = A⊥ . A2⊥ . B2 . ^B′2,
where the first id of A1⊥ is different from the first id of
A2⊥, then

|g − g′| def
= length(A1⊥ . B1) + length(A2⊥ . B2)

The distance between two structures S and S′ containing
gates of the same types, noted |S− S′|, is∑

g∈S,g′∈S′,type(g)=type(g′)

|g − g′|.

Proposition 4.4. Let S be a coherent structure and let
S −→ S′ −→∗ S′′ be a minimal computation (according to
Theorem 3.7). Then |S− S′′| > |S′ − S′′|.

Proof. The proof is by contradiction and a case analysis
on the reduction S −→ S′. One shows that, for every type of
reduction, if |S−S′′| ≤ |S′−S′′| (actually, the equality is not
possible) then S′ −→∗ S′′ must revert the reduction S −→ S′

thus contradicting the assumption of minimality.

The algorithm takes two coherent structures S and S′ such
that, for every gate in S there is a corresponding one in S′

with the same type, and conversely. We assume that the
structures are lexicographically ordered using the ids of the
signal and the first ids of the type of gates (by coherence,
the first ids are sufficient to discriminate gates). The reach-
ability algorithm is specified as follows:

1. If S = S′ then the algorithm terminates with success;

2. otherwise, a gate g in S is chosen with non-null distance
from the corresponding one g′ in S′ and such that it
may be reduced in S by decreasing its distance from
g′. Let S −→ S′′ be such reduction (by construction
|S− S′| > |S′′ − S′|).

(a) if no such reduction is possible the algorithm ter-
minates with failure;

(b) otherwise the algorithm returns to 1, replacing S

with S′.

The data structures of the algorithm are two arrays. The
first one stores the gates and is addressed using the first
id of their type (by coherence, the first ids are sufficient to
discriminate gates). The second array stores signals. The
elements are accessed through the co-name of the signal.
Every element is a boolean array that is accessed through
the id and containing true or false according to whether
the corresponding signal is present or absent, respectively.
Let n be the number of gates in S and let k be the maxi-
mal length of a gate in S. The step 2 of the algorithm may
require (i) a complete visit of the array of gates, that costs
n, and, for each element, (ii) a gate analysis for determin-
ing the distance and the possible reduction that costs k.
Since in the worst case, gates may be at distance 2k, the
algorithm may iterate 2k × n times. Then its computa-
tional complexity is O(2k2×n2). It is worth to remark that
the computational complexity of the reachability problem in

(weak coherent) reversible structures reduces to the reach-
ability marking problem in bounded place-transition Petri
nets, which is expspace complete [12, 6] and we are not
aware of any better algorithm for not coherent structures.

5. THE ENCODING OF ASYNCHRONOUS
RCCS

Coherent structures can encode a process calculus with
a reversible transition relation: the asynchronous rccs [7].
This allows one to precisely assess the expressive power of co-
herent structures and to establish properties of asynchronous
rccs using those of coherent structures, such as Theorem 4.3,
which has been proved for rccs in [7], or the above algorithm
of reachability, which is original.

The syntax of asynchronous rccs uses an infinite set of
names, ranged over by a, b, c, · · · , and a disjoint set of co-
names, ranged over by a, b, c, · · · . Names and co-names are
ranged over by α, β, · · · and are generically called actions.
Processes P are defined by the following grammar (we are
assuming that I are finite sets):

P ::= 0 |
∑

i∈I αi.Pi |
∏

i∈I Pi

| (new a) P

The term 0 defines the terminated process;
∑

i∈I αi.Pi de-
fines a process that may perform one action αi and continues
as Pi;

∏
i∈I Pi defines the parallel composition of processes

Pi; finally the term (new a) P defines a name with scope P .
Processes meet the following well-formed conditions:

– in a.P , the process P is 0 (continuations of co-names
are empty);

– in
∏

i∈I Pi the processes Pi are guarded choices.

The semantics of asynchronous rccs is defined in terms
of a transition relation that uses

– memories m:

m ::= 〈 〉 | 〈i〉n •m | 〈m,α,Q〉 •m

– run-time processes R:

R ::= m . P | R | R | (new a) R

– structural congruence ≡, defined in the standard way
(see Section 2), plus the rules

m . (
∏

i∈1..n Pi) ≡
∏

i∈1..n〈i〉n •m . Pi

m . (new a) P ≡ (new a) (m . P) (a /∈ fn(m))

The reduction relation −→ is the least relation on run-time
processes satisfying the axioms:

– m . (a.P +Q) | m′ . (a+R) −→ 〈m′, a,Q〉 •m . P |
〈m, a,R〉 •m′ . 0,

– 〈m′, a,Q〉 •m . P | 〈m, a,R〉 •m′ . 0 −→ m . (a.P +
Q) | m′ . (a+R),

and closed under the contextual rules for parallel, new and
structural congruence.

Let us have a short discussion that illustrates the main
ideas of our encoding of rccs before going into the details.
Consider the process a.b + a that may progress either as b

or terminate according to whether the external environment
offers an output or an input on a, respectively. The structure
encoding this process is

(new c′) ((^c . a .u:c′ | ^c′ .u′:b) | ^c . v:a)

We assume that the environment may emit at most one sig-
nal with co-name c. When such a signal arrives, one of the
gates ^c . a .u:c′ and ^c . v:a .w:c′′ will react, let it be the
second. Then the structure becomes

(new c′) ((^c . a .u:c′ | ^c′ .u′:b) | u′:c . ^v:a)

that emits a signal v:a. It is crucial for the correctness of
the encoding that v:a cannot interact with any other branch
of the choice, i.e. with the gate ^c . a .u:c′. At this stage, it
is possible that the context offers a signal v′:a rather than
accepting signals v:a. That is, the local choice of the process
does not match the choice of the context. Reversibility plays
a crucial role at this point. In fact, the above reductions are
reverted; the signal u′:c is re-emitted, and the left branch of
the above choice is chosen, thus obtaining the structure

(new c′) ((u′:c . ^a .u:c′ | ^c′ .u′:b) | ^c . v:a)

that may accept the signal v′:a. Notice that rccs memories
are implemented by inactive processes that are in parallel
with the active ones. No ad-hoc memory management op-
eration is used.

Our encoding uses environments Γ that map memories to
signals u:c such that:

1. (Γ is injective) if m 6= m′ then the signals Γ(m) and
Γ(m′) are different (they have different ids and co-
names);

2. (Γ is prefix closed) if s •m ∈ dom(Γ) then m ∈ dom(Γ)
and

– if s = 〈i〉n then 〈1〉n •m, · · · , 〈n〉n •m ∈ dom(Γ);

– if s = 〈m′, α, P 〉 then m′ ∈ dom(Γ).

Let fn(Γ)
def
= {a | ∃m,u. Γ(m) = u:a}.

Let Γ be an environment such that, for every i ∈ I,
Γ(mi) = ui:ci, for some ui. The encoding J·KΓ is defined
by

J
∏

i∈I mi . PiKΓ = (new fn(Γ))
(∏

i∈I(JPiKci | Γ(mi))

| U({mi | i ∈ I},Γ)
)

where the auxiliary functions JP Kc and U(M,Γ) are defined
in Figure 2. As a consequence of the definition, the function
J·KΓ always returns a coherent structure.

Lemma 5.1. If R −→ R′ then, for suitable Γ and Γ′,

JRKΓ −→∗ JR′KΓ′
, with id(µi) ∩ id(Γ(m) | Γ(m′)) 6= ∅.

Proof. Without loss of generality, let

R = m.
∑
i∈I

ai.Pi+
∑
j∈J

aj | m′.
∑
i∈I′

bi.Qi+
∑
j∈J′

bj | m′′.P ′′

and let ah = bk = a and P ′ =
∑

i∈I\{h} ai.Pi +
∑

j∈J aj and

Q′ =
∑

i∈I′ bi.Qi +
∑

j∈J′\{k} bj . Then R −→ 〈m′, a, P ′〉 •
m . Ph | 〈m, a,Q′〉 •m′ . 0 | m′′ . P ′′.

J0Kc = ^c

J
∑

i∈I ai.Pi +
∑

j∈J ajKc = (new ci
i∈I) (

∏
i∈I(^c . ai .ui:ci |

∏
i∈IJPiKci) |

∏
j∈J ^c .uj :aj)

where, for every ` ∈ I ∪ J, u`, u
′
` are fresh

J
∏

i∈1..n PiKc = (new ci
i∈1..n) (^c .u1:c1 . · · · .un:cn |

∏
i∈1..nJP Kci) where u1, · · · , un are fresh

J(new a) P Kc = (new a) (JP Kc)

U({〈1〉n •m, · · · , 〈n〉n •m}]M,Γ) = u:c . v1:c1 . · · · . vn:cn^ | U({m}]M,Γ)

where Γ(m) = u:c and Γ(〈i〉n •m) = vi:ci

U({〈m′, a, P 〉 •m, 〈m, a,Q〉 •m′}]M,Γ) = u:c .w:a . v:c1^ | JP Kc | u′:c′ .w:a^ | JQKc′ | U({m,m′}]M,Γ)

where Γ(m) = u:c and Γ(m′) = u′:c′ and Γ(〈m′, a, P 〉 •m) = v:c1
and w fresh

Figure 2: The functions JP Kc and U(M,Γ)

Let Γ be such that Γ(m) = w:c, Γ(m′) = w′:c′ and
Γ(m′′) = w′′:c′′. Then

JRKΓ

−→ (new c̃) (w:c . ^a .uk:ck | JPkKck |
∏

i∈I∪J\{h}JPiKc
| w′:c′ |

∏
i∈I′∪J′JQiKc′

| w′′:c′′ | JP ′′Kc′′ | U({m,m′,m′′},Γ))
−→ (new c̃) (w:c . ^a .uk:ck | JPkKck |

∏
i∈I∪J\{h}JPiKc

| w′:c′ . ^v′h:a |
∏

i∈I′∪J′\{h}JQiKc′
| w′′:c′′ | JP ′′Kc′′ | U({m,m′,m′′},Γ))

−→ (new c̃) (w:c . ^a .uk:ck | JPkKck |
∏

i∈I∪J\{h}JPiKc
| v′h:a | w′:c′ . v′h:a . ^ | ∏i∈I′∪J′\{h}JQiKc′
| w′′:c′′ | JP ′′Kc′′ | U({m,m′,m′′},Γ))

−→ (new c̃) (w:c . v′h:a . ^uk:ck | JPkKck |
∏

i∈I∪J\{h}JPiKc
| w′:c′ . v′h:a . ^ | ∏i∈I′∪J′\{h}JQiKc′
| w′′:c′′ | JP ′′Kc′′ | U({m,m′,m′′},Γ))

−→ (new c̃) (uk:ck | JPkKck | w:c . v′h:a .uk:ck^
|
∏

i∈I∪J\{h}JPiKc
| w′:c′ . v′h:a . ^ | ∏i∈I′∪J′\{h}JQiKc′
| w′′:c′′ | JP ′′Kc′′ | U({m,m′,m′′},Γ))

= JR′KΓ′

where

Γ′ = Γ[〈m′, a, P ′〉 •m 7→ uk:ck ; 〈m, a,Q′〉 •m′ 7→ v′′h :ch]

Since our structures and asynchronous rccs are both re-
versible, the above computation also demonstrates thatR′ −→
R implies JR′KΓ′

−→∗ JRKΓ.

It is possible to define the reverse encoding of J·KΓ. Given
a coherent reversible structure

∏
i∈1..m gi |

∏
i∈m+1..n uj :aj ,

the corresponding asynchronous rccs process is
∏

i∈1..m〈i〉n·
^
gi

|
∏

i∈m+1..n〈i〉n · aj , where
^
gi are gates without ids, and a

mapping (similar to Γ) associates memories to ids. It is not
difficult to demonstrate a correspondence between the two
terms similar to Lemma 5.1.

6. IRREVERSIBLE COMBINATORS
Having developed a theory for reversible structures, we

now analyze how to extend our calculus in order to integrate
(irreversible) strand algebra [4].

Let us add an irreversible co-name, noted dd, to the set
of co-names. There is no name corresponding to dd and we
assume that occurrences of dd in gates, if any, are in the last
position. For example, ^a .u:b . v:dd and w:a .u:b . v:dd^ are
valid gates. We also assume that structures never retain
signals with co-name dd.

The reduction relation of Definition 2.2 is then expanded
with

A⊥ . B . ^u:dd −→ A⊥ . B .u:dd^

that, contrary to the other output release rules, does not
emit any signal u:dd and has no associated converse reduction.
The intended meaning is that, while reversibility is admitted
up-to the signal preceding dd, it is forbidden once dd has been
consumed.

This extension of reversible structures is expressive enough
to encode

– the (irreversible) strand algebra in [4]. We only illus-
trate the encoding T · U of an irreversible strand a . b
(v and w are fresh ids):

Ta . bU def
= a . v:b .w:dd .

– the (irreversible) guarded choice in asynchronous ccs.
We only illustrate the encoding V·W of a.P+b (u, u′, v, v′

are fresh ids):

Va.P + bW def
= (^c . a .u:c′ .u′:dd | VPWc′)

| (^c . v:b . v′:c′′ | V0Wc′′)

where the irreversible reduction is performed once the
input continuation has been triggered. The encoding
of output has no tailing dd combinator.

Figure 3 defines the translation of the gate a . v:b .w:dd in
the dsd language. According to the semantics of the dsd

410/1/10Luca Cardelli 410/1/10

^a. v:b
_

u:a
_

u:a. ^v:b
_

u:a. ^v:b
_

 u:a. v:b^
_

v:b
_

reactions

signal u: a
_

DNA gate ^a. v: b
 _

DNA gate ^a.v: b.w: d
_
d

_

w w

Figure 3: The encoding of a . v:c .w:dd in the dsd language

language, if a strand <u t~ a> arrives we will obtain the
dsd term

410/8/10Luca Cardelli 410/8/10

^a. v:b
_

u:a
_

u:a. ^v:b
_

u:a. ^v:b
_

 u:a. v:b^
_

v:b
_

reactions

signal u: a
_

DNA gate ^a. v: b
 _

DNA gate ^a.v: b.w: d
_

d
_

w

DNA gate ^a.v: b.w: d
_
d

_

w w

w

w

that cannot be reverted to the initial one. We ignore the
minor issue of the inert “w” segment that is left over by the
dsd reduction.

7. CONCLUSIONS
We have developed a reversible concurrent calculus that is

amenable to biological implementations in terms of dna cir-
cuits and is expressive enough to encode a reversible process
calculus such as asynchronous rccs.

This study can be extended in several directions. The
encoding of rccs is given in terms of coherent structures.
For this reason asynchronous rccs bears Theorem 4.3 (that
has been already proved for rccs in [7]), and an efficient
algorithm of reachability. However coherence – a solution
must contain exactly one molecule of every species – is very
hard to achieve in nature, even if it will become easier in the
future. So, biology prompts a thorough study of reversible
concurrent calculi where processes have multiplicities and
the causal dependencies between copies may be exchanged.
Section 3 is a preliminary study of this matter.

Another direction is about implementations. In this paper
we have discussed the implementation of a concurrent lan-
guage in biomolecules. The presence of irreversible combi-
nators makes this implementation more interesting because
it paves the way for modelling standard (irreversible) con-
structs of programming languages. Comparing biological
in vivo implementations and standard in silico implemen-
tations of programming languages is an exciting research
direction both for biology and computer science.

Our study about reachability has been inspired by biology
and retains an easy solution in reversible structures because
of their simplicity. Studying other biological relevant prob-
lems, such as detecting the absence of molecules/processes,
stable concentrations of materials, etc., and designing effi-
cient algorithms are other directions that need to be investi-
gated in reversible structures and may bear simple solutions
in this model.

8. REFERENCES
[1] C. H. Bennett. Logical reversibility of computation.

IBM J. Res. Dev., 17(6):525–532, 1973.

[2] G. Berry and G. Boudol. The chemical abstract
machine. In Proceedings of POPL’90, pages 81–94.
ACM, 1990.

[3] G. Boudol and I. Castellani. Permutation of
transitions: An event structure semantics for CCS and
SCCS. In Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, volume
354 of Lecture Notes in Computer Science, pages
411–427. Springer, 1989.

[4] L. Cardelli. Strand algebras for DNA computing. In
DNA 2009, volume 5877 of Lecture Notes in Computer
Science, pages 12–24, 2009.

[5] L. Cardelli. Two-domain DNA strand displacement. In
Developments in Computational Models (DCM 2010),
volume 25 of EPTCS, pages 33–47, 2010.

[6] E. Cardoza, R. J. Lipton, and A. R. Meyer.
Exponential space complete problems for Petri Nets
and commutative semigroups: Preliminary report. In
Eighth Annual ACM Symposium on Theory of
Computing, pages 50–54. ACM, 1976.

[7] V. Danos and J. Krivine. Reversible communicating
systems. In CONCUR 2004, volume 3170 of Lecture
Notes in Computer Science, pages 292–307, 2004.

[8] P. Degano, J. Meseguer, and U. Montanari.
Axiomatizing net computations and processes. In
LICS’89, pages 175–185. IEEE Computer Society,
1989.

[9] D. T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem, 81:2340–2361,
1977.

[10] I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing
higher-order pi. In Proceedings of CONCUR 2010,
volume 6269 of Lecture Notes in Computer Science,
pages 478–493. Springer, 2010.

[11] J.-J. Lévy. An algebraic interpretation of the
lambda-beta-k-calculus; and an application of a
labelled lambda -calculus. Theor. Comput. Sci.,
2(1):97–114, 1976.

[12] E. W. Mayr and A. R. Meyer. The complexity of the
word problems for commutative semigroups and
polynomial ideals. Adv. in Math., 46(3):305–329, 1982.

[13] A. Phillips and L. Cardelli. A programming language
for composable DNA circuits. Journal of the Royal
Society Interface, 6(S4), 2009.

[14] I. Phillips and I. Ulidowski. Reversibility and models
for concurrency. In Proceedings of SOS 2007, volume
192 of ENTCS, pages 93–108, 2007.

[15] I. Phillips and I. Ulidowski. Reversing algebraic
process calculi. J. Log. Algebr. Program.,
73(1-2):70–96, 2007.

